
Version Date Notes

1.0.0 2019-07-20 First document release.

1.0.1 2019-08-10 Code fix: added line 1750

baSnake
A simple Snake-like videogame for the ZX Spectrum Next, coded in BASIC by Marco Varesio.

Document history

baSnake
Document history
Introduction
Playing baSnake
Program description

baSnake game screen
Variables and data structures

The snake queue
The game area map
Variables quick reference

Commented baSnake code
Program and author info
Initializations
Main menu
Game setup
Main game loop

Collision detection
Game over

Snake color change effect
Game over message window
High score update

User Defined Graphics initialization
Apple management routine

Apple not yet fallen
Apple already fallen

Main menu management routine
Selected garden drawing routine
Mongoose management routine

Mongoose shown
Mongoose hidden

Welcome routine
Logo screen
Music

Print turbo mode routine
Select turbo mode routine
Input routine
Sprites loading and initialization routine

Full source code
Recommended readings
Acknowledgments

af://n0
af://n3

Introduction

baSnake is a simple Snake/Nibbles-like videogame, written in BASIC language, for the ZX
Spectrum Next computer.

I originally coded baSnake for the classic ZX Spectrum computer, during the ZX Spectrum BASIC
Jam, hosted on itch.io in June 2017. Some months later, I decided make it more enjoyable by
taking advantage of the ZX Spectrum Next turbo modes and so released a second version. Finally,
I made a third release exclusively for the ZX Spectrum Next, using some of its peculiar features,
such as Layer 2, Sprites and Turbo Sound Next.

This document is aimed at explaining baSnake source code and is intended for people willing to
learn how to program games in BASIC on the ZX Spectrum Next; however, it does not claim to be
a BASIC / ZX Spectrum Next / Video games development reference.
The program suffers from the fact that it was quickly coded during my coffee breaks, without a
real software engineering process and its features were added progressively, as soon as I found
the time to implement them, so do not take it as a good programming example. In fact, by writing
this document, I realized that the code could be heavily refactored in order to improve its
readability, for example by reducing the number of GO TO statements and making the flow more
linear.
You are encouraged to tinker with the program and improve it!

Please be aware that the baSnake distribution (software, documents, media, schematics and
all other constituent parts) is provided "as is", without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability, fitness for a
particular purpose and noninfringement. In no event shall the authors or copyright holders
be liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the distribution or any of its
constituent parts or the use or other dealings in the distribution or its constituent parts.

You can also take a look at my other creations by browsing my retrogaming projects page on
itch.io, my retro web site/blog and my blog in Italian language or by visiting my YouTube channel.

Playing baSnake

The best way to understand how a game works is to play it, so, before diving into code, let's have
a game!
Assuming baSnake is already in the SD card in your Spectrum Next, simply locate BASNAKE.BAS
file in NextZXOS Browser, as depicted in the following screenshot:

af://n18
https://retrobits.itch.io/basnake
https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://en.wikipedia.org/wiki/Nibbles_(video_game)
http://www.worldofspectrum.org/ZXBasicManual/
https://www.specnext.com/
https://retrobits.itch.io/basnake
https://en.wikipedia.org/wiki/ZX_Spectrum
https://itch.io/jam/zx-spectrum-basic-jam
https://itch.io/
https://www.specnext.com/
https://www.specnext.com/new-turbo-modes-14-and-28mhz/
https://retrobits.itch.io/basnake/devlog/13385/basnake-nxt-turbo-mode-for-zx-spectrum-next
https://specnext.dev/wiki/Layer_2
https://specnext.dev/wiki/Sprites
https://specnext.dev/wiki/Turbo_Sound_Next
https://retrobits.itch.io/
https://retrobits.altervista.org/
https://somebitsofme.altervista.org/
https://www.youtube.com/channel/UCWTxG8paNsOUEU5mPcNklXA
af://n25

and then and tap ENTER key to load and run it.

The screenshots included in this document have not been taken on a real ZX Spectrum
Next, but on a PC running the excellent #CSpect emulator by Mike Dailly. Phoebus R Dokos
kindly maintains the updated ZX Spectrum Next SD card distribution images for CSpect and
real machines.
The other available emulator currently supporting the ZX Spectrum Next is ZEsarUX by
César Hernández Bañó, so, if you don't (yet) have a real ZX Spectrum Next, you can get
started with the aforementioned emulators.

On successful load, you will be welcomed with a short string quartet musical intro, adapted from
Pachelbel's Canon in D, and with the game logo screen:

http://cspect.org/
http://dailly.blogspot.com/
http://zxspectrumnext.online/
https://github.com/chernandezba/zesarux/

After some seconds, when the music stops, you will be allowed to enter the main menu screen by
pressing any key:

This screen briefly describes the purpose of the game, informs you about the game controls (Q ,
A , O , P keys or cursor keys), allows you to choose game speed through S key (there are 5

modes, from slowest to fastest, called: "Andante", "Moderato", "Allegro", "Vivace", "Presto") and
finally allows you to start the game, by choosing one of the eight available scenarios, by pressing
a numeric key between 1 and 8 .

The game's objective is to guide the snake trough the garden and gain score by eating the apples
that randomly appear on the screen, while avoiding collisions with the walls, the mongoose and
the snake itself. Each time an apple is consumed, the snake length increases, and so the game
difficulty.

The screenshot below depicts garden n. 8: I am heading the snake to a succulent red apple, while
a threatening mongoose appeared. Current score and high score are reported at the bottom of
the screen.

When the snake hits itself, one of the walls or the mongoose, the game ends and you can choose
to go back to the main menu screen and change some settings, by pressing the M key, or to
play again with current settings, by pressing any other key:

You can access the program source code by pressing the BREAK key; then you can execute again
by typing RUN , followed by the ENTER key.

Program description

The baSnake program is made up of a main program and some support subroutines, called by
the main program. The most important part of baSnake program is the game loop, i.e. a sequence
of instructions that is repeatedly executed; we can imagine each iteration of the loop as a
snapshot of the game at a given instant, or tick.

baSnake game screen

In order to understand how the program works, it's useful to see how the ZX Spectrum Next
screen is accessed by baSnake to draw the game elements such as the snake, the walls, the
apples and the mongoose.

The ZX Spectrum Next provides various graphic modes (see NextBASIC new commands and
features); among these, baSnake mostly uses Layer 0, which is the standard Spectrum mode:
256x192 pixels, which correspond to 32x24 characters, each character position being 8x8 pixels.
The actual game screen (the green area, including the red walls, in the previous picture) is made
up of 22 lines (numbered from 0 to 21 from top to bottom) and 32 columns (numbered from 0 to
31 from left to right), for a total of 704 character positions. baSnake uses the PRINT AT line,
column statement to draw the walls and the snake. At each game tick, the snake is moved by one
character position.
Two more lines (numbered 0 and 1) are available at the bottom of the screen, below the game
area; you can access these lines by printing to stream #1, associated to the keyboard channel.
baSnake uses the second of these lines for printing current score and high score information. For

af://n42
af://n44
https://specnext.dev/wiki/Video_Modes
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf
https://specnext.dev/wiki/Video_Modes
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap15.html

more information about channels and streams, please read Channels & Streams on the
comp.sys.sinclair FAQ.

The sprite system, another feature of the ZX Spectrum Next, provides a 320×256 pixels wide
surface on top of Layer 0, for drawing colorful sprites. baSnake uses the sprite system to draw the
apples and the mongoose.

The new Layer 2 mode, which provides a 256-color screen at the full 256x192 resolution, in which
every pixel is individually colored, is used for the game logo screen.

Variables and data structures

The snake queue

One of the most important variables in baSnake is the bidimensional array S , declared as DIM
S(704, 2) , which stores the positions (line and column numbers) of each character element
constituting the snake's body. The size of S is 704; we have already seen this number before: in
fact, it is the maximum number of characters that can be printed in the game area. The other
dimension is 2, since for each character we need two numbers, one for the line number and the
other for the column number.
Two numeric variables, H and T , are used as indices to the S array and respectively refer to the
position of the snake's head (first element) and tail (last element). Numbers from T+1 to H-1 are
the indices of all other snake elements. As a matter of fact, the snake is modeled with a queue,
implemented as a circular buffer through S , H and T .
At each game tick, the snake movement is implemented by "adding" a new head, whose position
is calculated based on current head position and direction, in S at index H+1 , and "removing"
the old tail (unless the snake is growing) by incrementing T ; the positions of all other snake body
elements do not change.

For example, let's assume that, at instant I, the snake is horizontally laid, moving from left to
right; current head position, at index 41, is: (line 10, column 20) and current tail position, at index
38, is: (line 10, column 17). At instant I+1, the new head position will be (line 10, column 21): since
the snake is moving horizontally, the line number does not change, and since the movement is
from left to right, the column number is incremented by 1. The new head position will be saved in

https://www.worldofspectrum.org/faq/reference/48kreference.htm#Channels
https://www.worldofspectrum.org/faq/index.html
https://specnext.dev/wiki/Sprites
https://specnext.dev/wiki/Layer_2
af://n50
af://n51
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap12.html
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Circular_buffer

S at index H = 42. The tail index T will be incremented to 39, reflecting the fact that the last
element before the tail becomes the tail itself:

The game area map

Another bidimensional array we have to deal with is M , declared as DIM M(22, 32) . As you can
guess by looking at the sizes of M , it models a map of the game area (22 lines x 32 columns).
Each cell of the matrix M can assume one of the following values:

0: the cell is empty,
1: the cell is occupied by the snake,
2: the cell is occupied by a wall,
3: the cell is occupied the mongoose.

af://n56

M is used for detecting collisions among the snake and itself, the walls or the mongoose.

Variables quick reference

The following table summarizes the most important variables in baSnake:

af://n68

Variable
name

Purpose

S Queue containing line and column numbers of each snake element

H Index of head element in snake queue S

X
Used for calculating the next head column number, based on current head
column number and direction

Y
Used for calculating the next head line number, based on current head line
number and direction

T Index of tail element in snake queue S

TY Used for storing the tail line number

TX Used for storing the tail column number

M Game area map

MV Used to access M values

SC Current score

HI High score

FX Apple position column number, when the apple is visible; -1 otherwise

FY Apple position line number, when the apple is visible; -1 otherwise

FD

Apple lifecyle countdown: is initialized to a random value when the apple is
drawn and decremented at each game tick; when it reaches 0, the apple is
deleted

MX
Mongoose position column number, when the mongoose is visible; -1
otherwise

MY Mongoose positoin line number, when the mongoose is visible; -1 otherwise

MR Random number, used to determine whether the mongoose should be visible

D Snake direction: 1: up; 2: down; 3: left; 4: right

DT Temporary variable used for calculating snake direction D

K
Code of the currently pressed key; snake direction D is set according to
currently pressed key code K

G

Whether the snake is growing: when the snake eats some food, G is set to a
positive number and decremented at each game tick until it becomes 0. While
G is greater than 0, the snake body length grows

F
Points to the FRAMES system variable; is used for synchronization and to
determine game ticks duration

TRB
Selected game speed; together with F , is used to determine game ticks
duration

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap25.html

Commented baSnake code

BASIC programs are made up of numbered lines; each line can contain one or more statements,
separated by the : character. This section explains in detail baSnake code line by line.

Program and author info

Let's start easy with 5 REM lines. REM stands for "remark" and can be followed by any text; this
text will be ignored by the computer, but can be used to improve program readability by humans.
You can, for example, use REM to provide author information, to specify what a variable means,
what a routine does or whatever you like:

Initializations

Line 7 contains 2 commands: as stated before, in BASIC a single program line can contain
multiple commands and : is used as separator.
The first statement, LET TRB = 7 , is a variable assignment: it sets TRB variable, which
represents the game speed, to value 7, which is medium speed.
The second statement, RUN AT 2 , is another new feature of the ZX Spectrum Next and changes
the computer speed to 14 MHz:

The GO SUB instruction at line 8 makes the computer jump to the sprites loading and
initialization routine, which starts at line 5000, and executes it. When the routine execution
completes (i.e. when the RETURN statement at line 5050 is reached), the computer returns
immediately after the GO SUB statement and executes the next instruction. In this case, the next
instruction is another GO SUB , in particular to the welcome routine at line 2800, which displays
the game logo screen, plays the musical intro and waits for a key press to continue.

When the program returns from the welcome routine, execution continues with line 9; here, once
more, a GO SUB instructions changes the flow of the program, this time to the user defined
graphics initialization routine at line 900:

Main menu

This section describes the code portion that is executed at startup and every time the player
chooses to return to main menu, by pressing the M key when the game is over.

 1 REM ***********************

 2 REM * baSnake 3.0.0 *

 3 REM * ZX Spectrum Next *

 4 REM * Marco Varesio 2019 *

 5 REM ***********************

 7 LET TRB = 7 : RUN AT 2

 8 GO SUB 5000: GO SUB 2800

 9 GO SUB 900

10 REM *** MAIN MENU ***

af://n143
af://n145
af://n148
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap5.html
af://n155

Variable assignment at line 11 initializes the high score to 0. A nice improvement to the game
could be saving high scores to SD and loading them at startup, instead of initializing to 0, so that
you could keep track of your achievements across different sessions.

Line 12 jumps to main menu management routine, which renders the main menu screen and
handles user choices, at line 1500:

Game setup

The main menu management routine ends when the user selects the desired scenario, or
garden; the following code completes game initialization and renders the selected garden.

RANDOMIZE instruction at line 15 initializes the sequence of pseudorandom numbers that will be
used in the game main loop for randomly placing the apples and the mongoose in the game
area:

Line 20 defines the game area matrix M and the snake queue S .
The dimensions of M are the lines count (22) and the columns count (32).
The dimensions of S are the maximum number of snake elements (704) and 2, because for each
snake element we need to know the coordinates (line and column number) in a two-dimensional
space:

Line 22 tells the computer to use the colors set with low brightness (BRIGHT 0), sets the border
(i.e. the frame around the game screen) to cyan color (BORDER 5) and sets the paper (i.e. the
background of the screen) to green color (PAPER 4). Then, the CLS command, which clears the
screen to the specified paper color, is invoked.

This wikipedia image shows the available colors in Layer 0 mode, with both low (on the left) and
high (on the right) brightness levels.
The effects of the statements at line 22 on the ZX Spectrum Next screen are shown in the
following picture:

 11 LET HI = 0

 12 GO SUB 1500

 15 RANDOMIZE

 20 DIM M(22, 32): DIM S(704, 2)

 22 BRIGHT 0: BORDER 5: PAPER 4: CLS

af://n162
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap11.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap16.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap15.html
https://en.wikipedia.org/wiki/File:Zx-colors.png

The GO SUB statement at line 25 jumps to the routine which draws selected garden on screen:

Line 30 resets current player score:

Lines 35 and 40 initialize the snake queue: the snake will be initially made up of only one
element, so, at line 35, the head index H and the tail index T are set to the same element in
array S ; in particular, the first:

Line 40 sets the position of this element to line = 11, column = 8:

Line 60 saves the snake element position to variables X and Y; these variables will be used a bit
later for updating the new snake head position at each game tick:

Line 70 sets the snake direction D to 4 (which means from left to right) and the growing amount
G to 4 (which means that for the first 4 game ticks, the snake will grow).
So, if the player does not change the direction, the snake will move from left to right and in the
first 4 game ticks, only the head position will be updated; besides, the snake is growing, the tail
position will remain the same. Starting from the next game tick, the tail index will be
incremented.

Line 80 sets the apple column (FX) and line (FY) numbers to -1. -1 is neither a valid line nor a
valid column number and it means no apple has fallen into the game area. The apple lifecycle
countdown FD is defined and set to 0:

 25 GO SUB 1600

 30 LET SC = 0

 35 LET T = 1: LET H = 1

 40 LET S(1, 1) = 11: LET S(1, 2) = 8

 60 LET Y = S(1, 1): LET X = S(1, 2)

 70 LET D = 4: LET G = 4

Similarly, when the game starts, the mongoose is hidden in its den and not displayed in the game
area, so we set its column (MX) and line (MY) numbers to -1. The variable used for determining
whether the mongoose should appear is defined and initialized to 0:

Line 90 prints current score (which is 0) and high score to the last line of the screen. The two lines
at the bottom of the screen are accessed by printing to stream #1 .
Simply stated, you can use PRINT AT line, column (where 0 <= line <= 21 and 0 <= column <=
31) to move the print position to one of the first 22 lines and PRINT #1; AT line, column
(where 0 <= line <= 1 and 0 <= column <= 31) to move the print position to one of the 2 lines at
the bottom of the screen:

Main game loop

The essence of baSnake program is the main game loop, from line 100 to line 600.
It is a loop because it keeps doing the same sequence of actions at each game tick over and over,
until the games ends. Basically, these actions are:

update the snake position based on current direction;
manage the appearance of the apple and the mongoose;
check collision between the snake and the apple (good), or with the walls, the mongoose or
the snake itself (bad);
update snake direction based on the key pressed;
wait for the necessary amount of time until the next game tick.

The first half of line 110 sets F to the least significant byte of FRAMES system variable. This looks
rather complicated, so let me try to explain.
The computers uses a portion of its memory for some specific purposes, and one of these is the
frames counter. It is a 3 bytes long value, which is automatically incremented by the computer at
a fixed frequency (between 50 and 60 Hz, based on configuration). For our purpose, we consider
only the least significant byte of this counter, which is located at byte 23672. It is useful to save
this value at the beginning of the game loop for later usage; in fact, at the end of the loop, it will
be used to determine the time elapsed since the loop started and so the time we still have to wait
for the next game tick to occur. By doing so, we make the game run at a constant defined speed.
The PEEK function, which returns the value in memory at the provided address, is used for
accessing the value of the FRAMES counter.

In the second half of line 110, the IF...THEN... control statement instructs the computer to
execute the apple management routine at line 1000 only if G equals 0; instead, if G is different
from 0, the program flow will continue normally to the next line. This means that no apple will fall
into the garden while the snake is growing:

 80 LET FX = -1: LET FY = -1: LET FD = 0

 81 LET MX = -1: LET MY = -1: LET MR = 0

 90 PRINT #1; AT 1, 0; "Score: "; SC, "High: "; HI

 100 REM *** MAIN GAME LOOP ***

 110 LET F = PEEK 23672: IF G = 0 THEN GO SUB 1000

https://www.worldofspectrum.org/faq/reference/48kreference.htm#Channels
af://n190
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap25.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap24.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap3.html

The next program lines calculate the new snake head position based on current head position
(which is stored in S array at index H and was previously copied to variables X and Y , at line
60) and snake movement direction (represented by variable D). If the snake is moving vertically,
only the head line number Y is updated; conversely, if the snake is moving horizontally, only the
column number X will be updated.
So, for example, if the snake head is currently at line 10 (Y = 10), column 5 (X = 5) and the snake
is going up (D = 1), the head column number will not change, since the snake is moving
horizontally, and the head line number will be decremented by 1, since the screen lines
numbering is ascending from top to bottom. This situation is managed at line 250.
After X or Y value is updated, the program will jump (GO TO statement) to line 270:

The following lines make the game area behave as if its opposite edges (top and bottom; left and
right) were connected, like in a planisphere.
So, for example, if the snake is going from right to left (D = 3) and current head column number
X is 0, if there is no wall obstructing its way, the new head position will be at the right end of the
screen (X = 21).
After X or Y value is updated, the program will jump to line 290:

Then, the computer will execute the mongoose management routine, at line 2500:

In line 300, we check whether the snake has reached the apple. If either the snake column
number X is different from the apple column number FX or the snake line number Y is
different from the apple line number FY , the snake has not reached the apple and the computer
skips the next instructions, by jumping to line 400:

Instead, if the snake has reached the apple, it will eat it and for the next 3 iterations of the game
loop, the snake body will grow. This is modeled by incrementing the G variable by 3 in the first
statement at line 310.

The SPRITE statement, in the same line, resets all properties of sprite number 0, which
corresponds to the apple picture. In particular, its visible flag is set to 0 and this makes the apple
disappear from the screen, since the apple has been eaten by the snake:

 250 IF D = 1 THEN LET Y = Y - 1 : GO TO 270

 255 IF D = 2 THEN LET Y = Y + 1 : GO TO 270

 260 IF D = 3 THEN LET X = X - 1 : GO TO 270

 265 IF D = 4 THEN LET X = X + 1 : GO TO 270

 270 IF Y < 0 THEN LET Y = 21 : GO TO 290

 275 IF Y > 21 THEN LET Y = 0 : GO TO 290

 280 IF X < 0 THEN LET X = 31 : GO TO 290

 285 IF X > 31 THEN LET X = 0 : GO TO 290

 290 GO SUB 2500

 300 IF X <>FX OR Y <>FY THEN GO TO 400

 310 LET G = G + 3: SPRITE 0, 0, 0, 0, 0: LET FX = -1: REM HIDE APPLE

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap2.html
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf

Line 320 rewards the player for having fed the snake, by increasing the score. The score is
increased based on the apple lifecycle: the player will gain 5 points for eating a red apple, 10 for
eating a golden apple and only 1 point for an apple which is about to rot.
In this line, we make use of the ELSE clause in the IF command. It was not available in the
original ZX Spectrum BASIC and is one of the many improvements provided by NextBASIC:

Line 330 notifies the player about the new score, by printing it to the bottom of the screen:

The program continues at line 400, which is executed regardless of whether the snake is growing
or not.
In particular, we prepare for printing the new snake head, whose position was previously
calculated, by setting the foreground (INK) color to black (color code 0):

Before updating the snake head to the new position, we have to reflect the fact that the position
previously occupied by the snake head is now occupied by an element of the snake body, since
the snake is moving.
So we print the snake body graphic character (whose code is 144) to the position previously
occupied by the snake head, overwriting it:

Then, before drawing the head at the new position, we save it into the snake queue S .
To do so, we increment the head index H by 1 and will use it to store the new head position in
the snake queue S . Since S is managed as a circular buffer, if we exceed its capacity by going
beyond the last position, we'll start writing again at the first position. The cleverly chosen size of
S ensures that by doing so, no useful data is overwritten:

We can now save the new head line and column numbers in S at the new index H :

We can finally print the snake head character, whose code is 145, at the new head position:

Now that we have managed the snake's head, by updating its position and printing it to the new
position, it's time to take care of the snake's tail. If the snake is growing, its tail position will not
change; instead, position currently occupied by the snake's tail will become empty and the last
snake body character before the tail will become the tail itself.
So, the next line checks if the snake is growing; if so, it jumps to line 490 and skips tail deletion:

 320 IF FD > 16 THEN LET SC = SC + 5: ELSE IF FD > 8 THEN LET SC = SC + 10: ELSE

LET SC = SC + 1

 330 PRINT #1; AT 1, 0; "Score: "; SC, "High: "; HI

 400 INK 0

 405 REM *** Draw new snake head ***

 410 PRINT AT S(H, 1), S(H, 2); CHR$ 144

 420 LET H = H + 1: IF H = 705 THEN LET H = 1

 430 LET S(H, 1) = Y: LET S(H, 2) = X

 440 PRINT AT S(H, 1), S(H, 2); CHR$ 145

https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf

If the snake is not growing, we delete the character currently drawn to the tail position, by
overwriting it with a blank space " " :

Then, we mark, in the game map M , the the position previously occupied by the snake tail as free,
by setting the corresponding value to 0.
The use of TY+1 and TX+1 , instead of TY and TX , as indices to access M might be confusing; it
is done this way because screen lines and columns number starts from 0, while indexing of
arrays starts from 1:

We reflect he fact that the penultimate character of the snake body becomes the tail by
incrementing the tail index T , with the usual circular buffer management:

Finally, we jump to collision detection code at line 500, where we'll check for collisions between
the snake and the walls or the mongoose:

Line 490 is the line we jumped to, from line 450, because the snake was growing after eating an
apple (G > 0). Here we decrement G (when the value of G will be 0, the snake will stop growing):

Based on current value of G , we play a different note, by means of the BEEP statement:

Collision detection

The following code determines whether the snake collides with itself, the mongoose, or one of
the walls. This is done by inspecting the value in game map M at the position corresponding to
the updated snake head position (still identified by X and Y). If this position is empty, the game
can continue and the snake head can actually advance to that position; otherwise, if the position
is already occupied, there is a collision and the game is over.
First, we set MV variable to the value of game map M corresponding to the new head position
(remember that array indexing starts from 1, so we have to add 1 to X and Y):

 450 IF G > 0 THEN GO TO 490

 452 REM *** Delete snake tail ***

 455 LET TY = S(T, 1): LET TX = S(T, 2)

 460 PRINT AT TY, TX; " "

 465 LET M(TY + 1, TX + 1) = 0

 470 LET T = T + 1: IF T = 705 THEN LET T = 1

 480 GO TO 500

 490 LET G = G - 1

 495 IF G = 2 THEN BEEP .04, -10

 496 IF G = 1 THEN BEEP .04, -20

 497 IF G = 0 THEN BEEP .04, -5

 500 LET MV = M(Y+1, X+1)

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap19.html
af://n246

Then, we check MV value and in case of collision, we set the M$ string variable to a message
describing the collision and then make the program jump to the game over code at line 700:

If we arrived here, it means that the collision did not occur, because the position in the game
map M corresponding to the snake's head position is free.
So, we mark this position as occupied by the snake, by setting it to 1 (with usual array index
displacement by 1):

So far, we have updated the snake head and tail positions, managed snake eating growing and
checked against collision, which did not occur (otherwise we would not be here, but inside the
game over code).
In the last phase of the game loop, the program checks for player input, updates snake direction
based on key pressed and waits for the necessary amount of time until the next game tick. This is
done by the input routine at line 4000.

Now we are at the end of the game loop, and the next instruction is a jump to the start of the
loop, for the next iteration:

Game over

If we've come this far, it means that a collision occurred and so the game is over.

First, we hide from the screen both the apple (number 0) and the mongoose (number 1) sprites,
by setting all their properties (ad in particular the visible flag) to 0. This is done with a FOR loop,
iterating 2 times over the sprite number I , which assumes values 0 and 1:

We need to hide sprites because in baSnake sprites are on top of the Layer 0 image and we want
to prevent them from overlapping the game over message "window" that we will draw later.

Snake color change effect

Then, with the help of the new REPEAT ... REPEAT UNTIL looping structure, introduced in
NextBASIC, we implement a simple special effect: starting with the snake head and ending with
the snake tail, we progressively change the color of each snake character element from black to
magenta, by overwriting it. Moreover, we replace the smiling snake head character with the
disappointed one.

First, the foreground color is set to magenta (color code 3):

 501 IF MV = 1 THEN LET M$ = " You bit yourself ": GO TO 700

 502 IF MV = 2 THEN LET M$ = " You hit the wall ": GO TO 700

 503 IF MV = 3 THEN LET M$ = " The mongoose bit you ": GO TO 700

 510 LET M(Y+1, X+1) = 1

 590 GO SUB 4000

 600 GO TO 100

 700 REM *** GAME OVER ***

 701 FOR I=0 TO 1: SPRITE I, 0, 0, 0, 0: NEXT I: REM HIDE APPLE AND MONGOOSE

af://n257
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap4.html
af://n263
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf

Then, the loop iterator I is set to the snake head index H , because we will start from the head
character:

Now the loop on each snake character actually starts:

We set C to the code of the character to print, that is 144 for the snake body and 147 for the
snake disappointed head:

The following line is a trick for overwriting the snake head only once, with the disappointed head
character, and not overwriting it again with the snake body character, in case the snake bit itself.
The IF condition makes the computer print the character with code C either at the first
iteration, when we are printing the head (I = H), or at subsequent iterations, when we are
printing the other snake body parts whose positions are different from the snake head position
(S(I, 1) <> S(H, 1) OR S(I, 2) <> S(H, 2)):

The following line makes the loop terminate when I = T , i.e. when we have replaced all black
snake characters until the last (which is the tail, identified by T), with the magenta ones.
If I is different from T , the loop execution continues with the next line:

In line 730, loop iterator I is decremented by one in order to index the next snake character
position in S . Line 735 implements the usual circular buffer behavior:

The PAUSE statement at line 737 adds a small delay at each iteration. Without the pause, the
loop would execute too fast and we would see the snake color immediately change from black to
magenta.
You could change the pause value and see by yourself what happens with different values:

The next line is the end of the loop. Technically speaking, REPEAT UNTIL 0 denotes an endless
loop, but here we do not run the risk of infinitely looping because of the loop end condition
specified by the WHILE statement at line 725.

 705 INK 3

 710 LET I=H

 715 REPEAT

 717 LET C=144: IF I = H THEN LET C=147

 720 IF I = H OR S(I, 1) <> S(H, 1) OR S(I, 2) <> S(H, 2) THEN PRINT AT S(I,

1), S(I, 2); CHR$ C

 725 WHILE I <> T

 730 LET I=I-1

 735 IF I = 0 THEN LET I = 704

 737 PAUSE 1

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap18.html

Game over message window

After the magenta snake effect, we display a blue "window" showing some game over message.
The window background is displayed by printing 10 lines, from number 6 to 15, of blank
characters on a blue (color code: 1) background, or PAPER :

The game over reason message, i.e. the description of the collision previously stored in variable
M$, is printed at screen line 9, with white (color code: 7) INK on red (color code: 2) PAPER .
The screen BORDER is set to yellow (color code: 6).
The message will be horizontally centered by calculating its column number from the screen
width (32) and message length (see LEN function), using the following formula: (32 - LEN

(M$)) / 2 :

Line 820 sets the INK color to yellow and activates the FLASH effect, which is used in next
program line for printing the flashing "GAME OVER" window title at screen line 7:

Then, FLASH effect is turned off for subsequent prints and colors are set to blue INK on cyan
PAPER :

High score update

Line 830 checks whether high score is unbeaten; if so, execution jumps to line 850; otherwise,
program flow continues with next line:

High score has been beaten, so current score becomes the new high score, and the player is
informed with a message, which is printed to screen line 11 and centered horizontally:

Afterwards, colors are set to white INK on blue PAPER :

 740 REPEAT UNTIL 0

 810 PAPER 1

 811 FOR I = 6 TO 15

 812 PRINT AT I, 0; " "

 813 NEXT I

 814 BORDER 6: PAPER 2: INK 7

 815 PRINT AT 9, (32 - LEN (M$)) / 2; M$

 820 INK 6: FLASH 1

 821 PRINT AT 7, 10; " GAME OVER! "

 825 FLASH 0: PAPER 5: INK 1

 830 IF SC <=HI THEN GO TO 850

 840 LET HI = SC

 841 LET M$ = " New high score : "+ STR$ (HI) + " "

 845 PRINT AT 11, INT ((32- LEN (M$))/2); M$

 850 PAPER 1: INK 7

af://n283
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap9.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap16.html
af://n292

The following code is a small loop in which the computer quickly plays a sequence of notes with
decreasing pitch:

Then, the program informs the player that he can either return to main menu, by pressing the
 M key, or play again with current settings, by pressing any other key.

The following code implements what is stated in the previous message by means of a loop in
which the program repeatedly checks whether a key is pressed and whether the potentially
pressed key is the M key. The INKEY$ function is used in line 880 to read the keyboard status
and determine the pressed key; if exactly one key is pressed, the corresponding character is
stored in K$; otherwise, K$ will contain an empty string. In the latter case (line 885), the
program will jump back to line 880 to read the keyboard status. The program flow will continue to
line 890 only when a single key will be pressed by the player.
Line 890 checks whether the key pressed is the M key; if so, the program jumps to the main
manu at line 10; otherwise (line 895), it jumps to the game setup code at line 15 to set up a new
game with current settings:

User Defined Graphics initialization

In computers, the letters, digits, punctuation marks, the white space and so on are called
characters and each character is identified by a numeric code. In the ZX Spectrum family of
computers, for example, code 97 identifies character "a" and code 49 identifies character "1".
Moreover, there are some special characters (from code 144 onwards) whose grapheme can be
defined by the user. These are called user-defined graphics or UDGs and we will use them for
defining the appearance of:

snake body elements (code 144),
snake head (code 145),
wall bricks (code 146),
sad/disappointed snake head (code 147), used in the game over routine.

Since characters are 8x8 pixels wide, the shape of each UDG is defined through a sequence of 8
bytes, in which each byte represents a line and each bit in a line defines whether for the
corresponding dot, the computer should show the PAPER (0) or INK (1) color. These patterns
must me loaded into ZX Spectrum memory, at byte 65368 onwards; so, data for UDG with code
144 will be stored in memory from byte 65368 to byte 65375, data for UDG with code 145 will be
stored in memory from byte 65376 to byte 65383, etc.

So, for example, let's consider the first two UDGs defined in baSnake, which are:

the character used for printing all snake body elements, except its head, and

 870 FOR I = 15 TO -30 STEP -2

 871 BEEP .05, I

 872 NEXT I

 875 PRINT AT 13, 1; "PRESS "; : INVERSE 1 : PRINT "M"; : INVERSE 0 : PRINT " TO

RETURN TO MAIN MENU"

 876 PRINT AT 14, 1; "OR ANY OTHER KEY TO PLAY AGAIN"

 880 LET K$ = INKEY$

 885 IF K$ = "" THEN GO TO 880

 890 IF K$ = "M" OR K$ = "m" THEN GO TO 10

 895 GO TO 15

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap19.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap18.html
af://n305
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap14.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanappa.html

the character used for printing the snake head

The following pictures represent the characters shapes and the corresponding pattern values:

Now, let's take a look at the code. The UDGs loading routine starts at line 900.
The RESTORE statement, located at line 901, defines line 903 as the starting point for UDGs
pattern DATA bytes, which will be fetched byte by byte at each READ execution. Line 903 provides
snake's body elements data, line 904 provides snake's head data, line 905 provides walls bricks
and line 906 provides sad snake's head data.
Line 902 uses a FOR loop for reading all these patterns byte by byte and storing them into
memory, by means of the POKE statement. We have 4 UDGs, for a total of 32 pattern data bytes,
so 32 iterations (from 0 to 31) are required:

Apple management routine

The apple management routine is quite simple: if there is no apple in the game area, it calculates
a random position and, if the position is not occupied by any other game item (snake, mongoose,
walls), it draws the apple at that position and sets the apple lifecycle counter to a random positive
value.
Otherwise, if the apple is already on screen, its lifecycle counter is decremented and based on its
value, the apple sprite image is updated. When the lifecycle counter reaches 0, the apple is
deleted.

 900 REM *** UDGs ***

 901 RESTORE 903

 902 FOR I = 0 TO 31: READ L: POKE 65368+I, L: NEXT I

 903 DATA 60, 66, 129, 129, 129, 129, 66, 60: REM SNAKE BODY 144

 904 DATA 60, 66, 165, 129, 165, 153, 66, 60: REM SNAKE HEAD 145

 905 DATA 4, 4, 4, 255, 64, 64, 64, 255: REM WALL 146

 906 DATA 60, 66, 165, 129, 129, 153, 66, 60: REM SNAKE SAD 147

 910 RETURN

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap6.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap4.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap14.html
af://n328

First, we check whether the apple is already in the game area, by looking at its column number
FX . The -1 value (which is an invalid column number) denotes the fact that the apple is currently
hidden; otherwise, the value is valid and it means that the apple is currently shown, and the
program jumps to line 1100:

Apple not yet fallen

If we are still here, the apple is currently hidden, so we calculate the random column (FX) and
line (FY) numbers where we will display the apple and the (adjusted) random apple lifecycle
duration FD :

Then we inspect the game map M to check if position at line FY , column FX is already occupied;
if so, we set again FX to -1 and return to the game loop without drawing the apple. We will be
luckier on next game iteration, maybe:

Please note that we increment indices FY and FX by 1 before accessing M matrix, because array
indexing starts from 1, while line and column numbering starts from 0.

Instead, if the position is actually free, we draw the red apple at the position corresponding to
line FY , column FX by assigning image 0 (red apple) to sprite 0 (apple sprite) by means of the
SPRITE command.
The SPRITE command requires 5 parameters:

1. The sprite number (0 is the apple sprite)
2. The sprite x coordinate
3. The sprite y coordinate
4. The sprite image (0 is the red apple)
5. The sprite flags (1 means that the sprite must be visible).

Since the character positions surface is 32x22 characters, each character is 8x8 pixels and the
display surface is 320×256 pixels, overlapping the Layer 0 / ULA screen by 32 pixels, we can
calculate the sprite x and y coordinates by multiplying the column and line numbers by 8 and
displacing them by 32 pixels:

Finally, we return to the game loop:

Apple already fallen

1000 REM *** APPLE ROUTINE ***

1001 REM APPLE NOT YET FALLEN

1005 IF FX <>-1 THEN GO TO 1100

1010 LET FX = INT (RND *32): LET FY = INT (RND *22): LET FD = 40+ INT (RND

*30)

1015 IF M(FY + 1, FX + 1) <>0 THEN LET FX = -1 : LET FD = 0: RETURN

1030 SPRITE 0, FX*8+32, FY*8+32, 0, 1: REM RED APPLE

1040 RETURN

af://n333
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap11.html
af://n355

If the apple is already in the game area, the apple lifecycle counter FD is decremented:

and then change the apple image to golden (sprite image 1) or rotting (sprite image 2) based on
the apple age (please note that the only difference in the parameters to the SPRITE command is
the fourth, i.e. the sprite image):

If the apple is too old (FD = 0), we make it disappear, by resetting its properties. In particular, the
sprite is made invisible by setting the sprite flags to 0. We also set the apple column number FX
to -1:

Finally, we return to the game loop:

Main menu management routine

This routine displays the main menu screen and allows the player to change the game speed and
to select a game scenario and consequently start a new game.
The code for checking keypresses, printing characters to screen and displaying sprites is better
covered in other sections, so don't worry if you cannot find detailed explanations here.

First, the screen is painted all black:

Then, a FOR loop iterates over the 4 sprites making the game title and displays them:

Next, the title screen is rendered, with a mixture of multicolored text and sprite images:

1100 REM APPLE ALREADY FALLEN

1105 LET FD = FD - 1

1110 IF FD = 8 THEN SPRITE 0, FX*8+32, FY*8+32, 2, 1 : RETURN : REM ROTTEN

APPLE

1111 IF FD = 16 THEN SPRITE 0, FX*8+32, FY*8+32, 1, 1 : RETURN : REM YELLOW

APPLE

1115 IF FD = 0 THEN SPRITE 0, 0, 0, 0, 0: LET FX = -1: REM HIDE APPLE

1130 RETURN

1500 BORDER 0: PAPER 0: CLS

1505 FOR I=0 TO 3: SPRITE I+2,120+16*I,32,I+4,1: NEXT I

af://n364

Then the routine for printing currently selected game speed is executed:

And the screen rendering continues:

Then, there is a loop, starting at line 1550, in which we check for the currently pressed key. If the
pressed key is a numeric key between 1 and 8 , the program jumps out of the loop at line
1570; if the pressed key is S , the program cycles through game speeds and selects the next one
(see line 3100) and remains inside the loop; if none of the above keys is pressed, the program
stays in the loops and keeps checking for key presses, by jumping back to line 1550:

If we've come this far, we have pressed a key between 1 and 8 and are ready to start a new
game with the selected scenario. Before returning to the main program, we clear all drawn
sprites, by making them not visble:

Selected garden drawing routine

1507 PRINT "Guide the snake "; : INK 4: PRINT CHR$ 145; CHR$ 144; CHR$ 144;

 CHR$ 144; : INK 5: PRINT " through the"

1508 PRINT "garden, eating the apples that": SPRITE 0,240,56,0,1

1509 PRINT "fall from the tree, before they"

1510 PRINT "rot. Avoid the walls "; : PAPER 2: INK 6: PRINT CHR$ 146; CHR$ 146;

 CHR$ 146; : PAPER 0: INK 5: PRINT " and the"

1511 PRINT "mongoose .": SPRITE 1, 104, 80, 3, 1

1512 PRINT

1513 INK 7:PRINT "There are 8 different gardens:"

1514 INK 6: PRINT "press key from "; : INVERSE 1 : PRINT "1";

1515 INVERSE 0: PRINT " to "; : INVERSE 1: PRINT "8";: INVERSE 0

1516 PRINT " to choose."

1517 PRINT

1518 GO SUB 3050

1519 INK 6: PRINT "Press "; : INVERSE 1: PRINT "S"; : INVERSE 0 : PRINT " to

change speed."

1520 INK 7: PRINT : PRINT "Snake controls:": INK 6: INVERSE 1

1521 PRINT "Q"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "UP"

1522 PRINT "A"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "DOWN"

1523 PRINT "O"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "LEFT"

1524 PRINT "P"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "RIGHT"

1525 INVERSE 0: PRINT

1527 INK 5: PRINT "Check out my other retro stuff @": INK 7

1528 PRINT "https://retrobits.altervista.org"

1529 PRINT #1; AT 0, 0; " https://retrobits.itch.io "

1530 PRINT #1; "Enjoy! Marco 'Pulce' Varesio"

1550 LET L$ = INKEY$

1555 IF L$ >= "1" AND L$ <= "8" THEN GO TO 1570

1557 IF L$ = "S" OR L$ = "s" THEN GO SUB 3100

1560 GO TO 1550

1570 FOR I=0 TO 63: SPRITE I,0,0,0,0: NEXT I

1580 RETURN

af://n380

The routine staring at line 1600 draws the scenario selected by the player in the menu screen, by
pressing a numeric key between 1 and 8 . The chosen garden is stored in string variable L$.

The first garden is simpler than the others, in fact it has no walls; so, in case it has been selected,
the program skips the walls drawing code and jumps directly to the end of the routine, at line
1700:

All other gardens have some walls, that must be rendered and taken into account during the
game; in fact, the collision with a wall will make current game end.
The next lines specify, for each garden, where to find the walls data. The RESTORE statement, in
fact, specifies at which line the data starts, the DATA statement defines the actual data and the
READ statement reads this data into the provided variable, as described in the ZX Spectrum
manual.

For each garden, walls data is organized in the following way:

the first DATA statement is followed by the number of walls
all subsequent DATA statements, one for each wall, are followed by 4 numbers, which
specify the line and column numbers of the two wall ends, i.e. the minimum line number,
the minimum column number, the maximum line number and the maximum column
number.

For example, let's consider walls data for garden 2, which starts at line 2000.
The first DATA statement informs us that there are 4 walls, so the 4 subsequent data statements
will provide the ends of each wall:

the first wall (line 2001) extends from line 0, column 0 to line 0, column 31;
the second wall (line 2002) extends from line 21, column 0 to line 21, column 31;
the third wall (line 2003) extends from line 0, column 0 to line 21, column 0;
the fourth wall (line 2004) extends from line 0, column 31 to line 21, column 31;

So the walls in garden 2 will be laid as depicted in the following picture:

1600 REM *** DRAW SELECTED GARDEN ***

1601 IF L$ = "1" THEN GO TO 1700

1602 IF L$ = "2" THEN RESTORE 2000

1603 IF L$ = "3" THEN RESTORE 2050

1604 IF L$ = "4" THEN RESTORE 2010

1605 IF L$ = "5" THEN RESTORE 2020

1606 IF L$ = "6" THEN RESTORE 2030

1607 IF L$ = "7" THEN RESTORE 2080

1608 IF L$ = "8" THEN RESTORE 2090

2000 DATA 4

2001 DATA 0, 0, 0, 31

2002 DATA 21, 0, 21, 31

2003 DATA 0, 0, 21, 0

2004 DATA 0, 31, 21, 31

http://www.worldofspectrum.org/ZXBasicManual/zxmanchap6.html

Now, let's take a look at the code; first, for drawing the wall bricks, we set PAPER color to red and
INK color to yellow:

Then we read the number of walls into variable B :

And iterate for each of the B walls:

Fore each wall, we read the coordinates (line and column number) of each wall end:

Then, by means of two nested loops, we iterate over each line and column within the walls ends
and for each position we draw the wall bricks, by printing UDG with code 146. We also keep track
of the positions occupied by the walls in the game map M :

The loop on the walls number B ends at line 1690:

1610 PAPER 2: INK 6

1620 READ B

1630 FOR K = 1 TO B

1640 READ MINY: READ MINX: READ MAXY: READ MAXX

1650 FOR I = MINY TO MAXY

1651 FOR J = MINX TO MAXX

1660 PRINT AT I, J; CHR$ 146

1665 LET M(I+1, J+1) = 2

1670 NEXT J

1671 NEXT I

http://user%20defined%20graphics%20initialization/

Finally, after the walls have been drawn (or if the walls drawing has been skipped in case of
Garden 1), the computer plays a sequence of notes with increasing pitch to inform the player that
the game is about to begin and restores the green PAPER color. Then, control returns to the
caller:

For completeness sake, walls data for all gardens is reported:

1690 NEXT K

1700 FOR I = -15 TO 15 STEP 2

1701 BEEP .05, I

1702 NEXT I

1750 PAPER 4

1900 RETURN

2000 DATA 4

2001 DATA 0, 0, 0, 31

2002 DATA 21, 0, 21, 31

2003 DATA 0, 0, 21, 0

2004 DATA 0, 31, 21, 31

2010 DATA 8

2011 DATA 0, 7, 9, 7

2012 DATA 5, 21, 5, 31

2013 DATA 11, 23, 21, 23

2014 DATA 16, 0, 16, 9

2015 DATA 0, 8, 9, 8

2016 DATA 6, 21, 6, 31

2017 DATA 11, 22, 21, 22

2018 DATA 15, 0, 15, 9

2020 DATA 4

2021 DATA 6, 7, 7, 24

2023 DATA 16, 7, 17, 24

2024 DATA 9, 6, 14, 7

2025 DATA 9, 24, 14, 25

2030 DATA 4

2031 DATA 0, 4, 2, 27

2032 DATA 19, 4, 21, 27

2033 DATA 0, 0, 21, 3

2034 DATA 0, 28, 21, 31

2050 DATA 8

2051 DATA 0, 0, 0, 31

2052 DATA 21, 0, 21, 31

2053 DATA 9, 3, 9, 28

2054 DATA 13, 3, 13, 28

2055 DATA 1, 0, 8, 0

2056 DATA 1, 31, 8, 31

2057 DATA 14, 0, 20, 0

2058 DATA 14, 31, 20, 31

2080 DATA 8

2081 DATA 13, 27, 17, 27

2082 DATA 17, 16, 17, 26

2083 DATA 4, 4, 8, 4

2084 DATA 4, 5, 4, 15

2085 DATA 13, 25, 15, 25

2086 DATA 15, 16, 15, 24

Mongoose management routine

The mongoose management routine has some similarities with the apple management routine,
in that we set the column number MX to the invalid -1 value to denote that the mongoose is
currently not shown in the game area; instead, a valid value represents the actual column
number when the mongoose is shown.

The program only manages the mongoose at specific instants, i.e. when the frames counter value
stored in F is one among 0, 64, 128, 129. Please note that, since F is set to the least significant
byte of the frames counter system variable, when it reaches the 255 value, it starts again from 0:

If the mongoose is currently hidden, jump to line 2600:

Mongoose shown

The next statements randomly make the mongoose hide with a probability of 60% and stay on
screen with a probability of 40%.
First, set variable MR to a random value between 0 and 1:

Then if MR > 0.6, i.e. with a probability of 40%, leave the mongoose on screen and return to the
game loop:

Otherwise, make the mongoose invisible, by setting all its sprite (sprite number: 1) properties to
0, mark the position previously occupied by the mongoose as free in the game map M , set the
mongoose column number MX to -1 and return to the game loop:

2087 DATA 6, 6, 8, 6

2088 DATA 6, 7, 6, 15

2090 DATA 11

2091 DATA 0, 0, 0, 14

2092 DATA 0, 17, 0, 31

2093 DATA 21, 0, 21, 14

2094 DATA 21, 17, 21, 31

2095 DATA 5, 3, 5, 28

2096 DATA 16, 3, 16, 28

2097 DATA 1, 0, 9, 0

2098 DATA 12, 0, 20, 0

2099 DATA 1, 31, 9, 31

2100 DATA 12, 31, 20, 31

2101 DATA 10, 15, 11, 16

2500 REM *** MONGOOSE ROUTINE ***

2503 IF F <> 0 AND F <> 64 AND F <> 128 AND F <> 192 THEN RETURN

2505 IF MX = -1 THEN GO TO 2600

2510 LET MR = RND

2515 IF MR > .6 THEN RETURN

af://n423
af://n430

Mongoose hidden

The next statements make the mongoose appear at a random position with a probability of 70%.
First, set variable MR to a random value between 0 and 1:

Then if MR > 0.7, i.e. with a probability of 30%, leave the mongoose hidden and return to the
game loop:

Otherwise, randomly compute the mongoose coordinates:

Before drawing the mongoose, we must perform some check.

First, we do not want the mongoose to appear in front of the snake, otherwise it would
immediately byte the snake without giving the player the chance to avoid it, and the game would
be over in a rather frustrating way. So, in case the mongoose position is immediately in front of
the snake (same line and column numbers as the snake head), we reset its column number MX to
-1 and return to the game loop. The mongoose will have another chance to appear in the next
game loop iteration:

Then, we check that the calculated position is free in the game map, since we do not want the
mongoose to appear over a wall or over the snake. In case the mongoose position is not free, we
reset its column number MX to -1 and return to the game loop. The mongoose will have another
chance to appear in the next game loop iteration:

If we've come this far, there is nothing preventing the mongoose to appear, so we can draw its
sprite at the random position we calculated a little while ago, in line 2610:

Finally, the mongoose position is marked in the game map M , and the routine returns to the
game loop:

Welcome routine

2520 SPRITE 1, 0, 0, 0, 0: REM HIDE MONGOOSE

2525 LET M(MY + 1, MX + 1) = 0

2530 LET MX = -1

2590 RETURN

2600 LET MR = RND

2605 IF MR > .7 THEN RETURN

2610 LET MX = INT (RND *32): LET MY = INT (RND *22)

2615 IF MX = S(H, 2) OR MY = S(H, 1) THEN LET MX = -1: RETURN

2620 IF M(MY + 1, MX + 1) <>0 THEN LET MX = -1: RETURN

2625 SPRITE 1, MX*8+32, MY*8+32, 3, 1: REM DRAW MONGOOSE

2630 LET M(MY + 1, MX + 1) = 3

2700 RETURN

af://n437
af://n453

The welcome routine displays a colorful title screen, also known as loading or splash screen, and
plays a short music, adapted from Pachelbel's Canon in D.

Logo screen

LAYER OVER 0 statement at line 2805 instructs the computer to display sprites on top of Layer 2
graphics and Layer 2 graphics on top of standard ZX Spectrum screen:

Then, BORDER and PAPER colors are set to black:

and the screen is cleared with the CLS command. LAYER 2,1 command enables Layer 2 display,
which provides a 256-color screen at the full 256x192 resolution, in which every pixel is
individually colored.
Finally, the logo image stored in the BASNAKE.NXI file is loaded and displayed in the active layer
(which is Layer 2, previously selected) by means of the LOAD...LAYER command.

You can use Next BMP tools by Stefan Bylund to convert your images from bitmap (.bmp)
format to ZX Spectrum Next Layer 2 format (.nxi).

Lines 2822 and 2825 print some messages at the top and bottom of the screen:

Music

In line 2827, the computer processor speed is set to 3.5 MHz in order to play the music at the
right speed:

The following assignments define the notes and effects, if any, that must be played on each of
the 9 available sound channels:

2800 REM *** WELCOME (LOADING SCREEN & MUSIC INTRO) ***

2805 LAYER OVER 0

2810 BORDER 0: PAPER 0

2820 CLS:LAYER 2,1:LOAD "basnake.nxi" LAYER

2822 PAPER 5: INK 26: PRINT AT 23,0;" ";CHR$ 127;"2017-2019 marco's retrobits

"

2825 PRINT AT 0,0;"baSnake 3.0 for ZX Spectrum NEXT"

2827 RUN AT 0

2830 LET a$="UX5000T60O5W3#FED#Cbab#C"

2831 LET b$="UX5000T60O3W6Dab#fgdga"

2832 LET c$=""

2833 LET d$=""

2834 LET e$="UX2500T60O3W3Dab#fgdga"

2835 LET f$="UX2500O4W6N3D#FAG#FD#FEDbDAGBAG"

2836 LET g$=""

2837 LET h$=""

2838 LET i$="UX5000T60O5W3D#Cbag#fge"

af://n456
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_File_Commands.pdf
https://github.com/stefanbylund/zxnext_bmp_tools/blob/master/build/zxnext_bmp_tools.zip
af://n467

Line 2840 lets the music play:

For all details on playing music on the ZX Spectrum Next, you can read Chapter 19 of the manual.

When the music is over, we reset computer speed to 14 MHz (RUN AT 2), inform the player that
he must press any key to start the game and wait for the key press with the PAUSE 0 command.

After the key press, Layer 2 is disabled (LAYER 2,0) and the standard ZX Spectrum mode is
activated (LAYER 0):

Then, control returns to the caller:

Print turbo mode routine

The routine starting at line 3050 simply prints to screen a description, borrowed from the music
terminology, of the selected game speed, which is stored in variable TRB :

Select turbo mode routine

The routine starting at line 3100 is invoked when the player cycles through available game speed
in main menu, by pressing the S key.

It calculates the next TRB by subtracting 2 from current value (in fact, lower values of the TRB
variable correspond to higher game speeds):

If the lower bound is exceeded, TRB is set to the maximum value:

2840 PLAY a$,b$,c$,d$,e$,f$,g$,h$,i$

2850 RUN AT 2

2860 PRINT AT 0,0; " PRESS ANY KEY TO START "

2870 PAUSE 0

2880 LAYER 2,0: LAYER 0

2890 RETURN

3050 REM *** PRINT TURBO MODE ***

3052 INK 7

3055 PRINT AT 11, 0; "Turbo mode: ";

3056 INK 5

3060 IF TRB = 11 THEN PRINT "ANDANTE ": GO TO 3070

3061 IF TRB = 9 THEN PRINT "MODERATO": GO TO 3070

3062 IF TRB = 7 THEN PRINT "ALLEGRO ": GO TO 3070

3063 IF TRB = 5 THEN PRINT "VIVACE ": GO TO 3070

3064 IF TRB = 3 THEN PRINT "PRESTO ": GO TO 3070

3070 INK 7

3090 RETURN

3100 REM *** CHANGE TURBO MODE ***

3105 LET TRB = TRB - 2

af://n481
af://n484

Value Direction

1 up

2 down

3 left

4 right

The selected speed is then shown on screen, by calling the turbo mode print routine:

After a small pause, control returns to the caller:

Input routine

The input routine starting at line 4000 loops, checking the keyboard status and if a key
corresponding to the snake direction has been pressed, the snake direction is updated. The loops
terminates and the routine ends when the time elapsed since the beginning of the game loop
matches the requested game speed, and so the next game loop iteration can start. The change of
direction in the snake movement is allowed only if the new direction is perpendicular to current
direction, i.e. if the snake is currently moving horizontally, the allowed new directions are from
top to bottom and from bottom to top; instead, if the snake is moving vertically, the allowed
directions are from left to right and from right to left.

The loop starts by saving current snake direction D into temporary variable DT :

Direction can assume one of the following values:

Then the code of currently pressed key, if any, is saved in K variable (CODE function returns the
code of the character provided as input and INKEY$ returns a string containing currently pressed
character, if any):

The keys and character codes that allow the player to change the snake direction are:

3110 IF TRB = 1 THEN LET TRB = 11

3115 GO SUB 3050

3120 PAUSE 300

3130 RETURN

4000 REM *** INPUT ***

4010 LET DT = D

4100 LET K = CODE(INKEY$)

af://n495
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap14.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanchap18.html
http://www.worldofspectrum.org/ZXBasicManual/zxmanappa.html

Key/Character Code Direction

↑ 11 1: up

Q 81 1: up

q 113 1: up

↓ 10 2: down

A 65 2: down

a 97 2: down

← 8 3: left

O 79 3: left

o 111 3: left

→ 9 4: right

P 80 4: right

p 112 4: right

The following lines store in DT the new snake direction, based on current direction and the code
of the key pressed by the player:

If no key is pressed, the snake continues moving with current direction.

The input loop is executed until the game loop iteration elapsed time, computed as the
difference between the current value of the frames counter and the value of the frames counter,
saved at the beginning of the game loop in variable F , exceeds the value stored in TRB .

So, smaller values of TRB will determine a faster game speed, because the number of frames
that must elapse before the next game loop iteration is mall; instead, high values of TRB will
determine a slower game speed. TRB value is assigned in the main menu, when the player
selects the game speed by pressing the S key.

When the necessary time to wait for the next game tick elapses, the chosen direction is saved
into D variable:

and then control returns to the game loop:

4210 IF (K = 11 OR K = 81 OR K = 113) AND (D = 3 OR D = 4) THEN LET DT = 1

4220 IF (K = 10 OR K = 65 OR K = 97) AND (D = 3 OR D = 4) THEN LET DT = 2

4230 IF (K = 8 OR K = 79 OR K = 111) AND (D = 1 OR D = 2) THEN LET DT = 3

4240 IF (K = 9 OR K = 80 OR K = 112) AND (D = 1 OR D = 2) THEN LET DT = 4

4280 IF ABS(PEEK 23672 - F) < TRB THEN GO TO 4100

4290 LET D = DT

4300 RETURN

Sprite image
number

Image description
Sprite image (3x
zoom)

0 Red apple

1 Golden apple

2 Rotting apple

3 Mongoose

4, 5, 6,7
baSnake writing, displayed in menu screen and
made up of 4 sprite images

Sprites loading and initialization routine

This routine's responsibility is mainly loading sprite image data from the BASNAKE.SPR file and
initializing the sprite system. Sprites are a new feature introduced with the ZX Spectrum Next and
were not available on the classic ZX Spectrum; you can read more about sprites in NextBASIC new
commands and features or on the ZX Spectrum Next Sprites Wiki.

You can use UDGeedNext tool by David Saphier for painting your own sprites or converting
an existing image to ZX Spectrum Next sprites and saving them to a sprite data file. The tool
is included in the NextBuild IDE.

baSnake uses 8 sprite images, identified by numbers from 0 to 6; each sprite is 16x16 pixels wide;
magenta color defines transparency:

Line 5001 loads the content of the sprites data file into bank 12 of ZX Spectrum Next RAM:

Line 5010 defines all sprites patterns using data previously loaded into bank 12.

Line 5020 resets the sprites attributes and settings to defaults:

Line 5030 enables sprites:

Line 5040 prevents sprites to be displayed on the screen border:

5000 REM *** SPRITES INITIALIZATION ***

5001 LOAD "basnake.spr" BANK 12

5010 SPRITE BANK 12

5020 SPRITE CLEAR

5030 SPRITE PRINT 1

af://n583
https://gitlab.com/thesmog358/tbblue/blob/master/docs/nextzxos/NextBASIC_New_Commands_and_Features.pdf
https://specnext.dev/wiki/Sprites
http://zxbasic.uk/nextbuild/

Sprite
number

Sprite description
Sprite
image
numbers

0
Apple sprite; will be associated to one if the 3 sprite images
number, depending on the value of the apple lifecycle counter
FD

0, 1, 2

1 Mongoose sprite 3

2, 3, 4, 5
baSnake writing: 4 sprites are required to display simultaneously
the 4 sprite images making up the writing

4, 5, 6, 7

Finally, line 5050 returns to the initializations code, whence this subroutine was called:

Once the sprite images have been loaded and the sprite system initialized, the rest of the
program will be able to draw sprites to the screen, by means of the SPRITE command which, for
each sprite, will define the sprite image to be displayed and the sprite properties, such as its
position and visibility flag.

baSnake program will use 6 sprites:

Full source code

For completeness sake, the full baSnake source code is reported.

The baSnake program has not been typed directly on a ZX Spectrum Next, but on a text
editor running on a PC. Then, the text file containing the source code has been converted to
the BASNAKE.BAS file using the .txt2bas dot command created by Garry Lancaster. At the
moment of writing this document, .txt2bas is still in testing phase, but should be publicly
released soon.
The #autostart text after line 5 is not a basic command, but a directive instructing
.txt2bas to make the converted BASIC program automatically start execution at the
following line.

5040 SPRITE BORDER 0

5050 RETURN

 1 REM ***********************

 2 REM * baSnake 3.0.0 *

 3 REM * ZX Spectrum Next *

 4 REM * Marco Varesio 2019 *

 5 REM ***********************

#autostart

 7 LET TRB = 7 : RUN AT 2

 8 GO SUB 5000: GO SUB 2800

 9 GO SUB 900

 10 REM *** MAIN MENU ***

 11 LET HI = 0

 12 GO SUB 1500

 15 RANDOMIZE

 20 DIM M(22, 32): DIM S(704, 2)

 22 BRIGHT 0: BORDER 5: PAPER 4: CLS

af://n645

 25 GO SUB 1600

 30 LET SC = 0

 35 LET T = 1: LET H = 1

 40 LET S(1, 1) = 11: LET S(1, 2) = 8

 60 LET Y = S(1, 1): LET X = S(1, 2)

 70 LET D = 4: LET G = 4

 80 LET FX = -1: LET FY = -1: LET FD = 0

 81 LET MX = -1: LET MY = -1: LET MR = 0

 90 PRINT #1; AT 1, 0; "Score: "; SC, "High: "; HI

 100 REM *** MAIN GAME LOOP ***

 110 LET F = PEEK 23672: IF G = 0 THEN GO SUB 1000

 250 IF D = 1 THEN LET Y = Y - 1 : GO TO 270

 255 IF D = 2 THEN LET Y = Y + 1 : GO TO 270

 260 IF D = 3 THEN LET X = X - 1 : GO TO 270

 265 IF D = 4 THEN LET X = X + 1 : GO TO 270

 270 IF Y < 0 THEN LET Y = 21 : GO TO 290

 275 IF Y > 21 THEN LET Y = 0 : GO TO 290

 280 IF X < 0 THEN LET X = 31 : GO TO 290

 285 IF X > 31 THEN LET X = 0 : GO TO 290

 290 GO SUB 2500

 300 IF X <>FX OR Y <>FY THEN GO TO 400

 310 LET G = G + 3: SPRITE 0, 0, 0, 0, 0: LET FX = -1: REM HIDE APPLE

 320 IF FD > 16 THEN LET SC = SC + 5: ELSE IF FD > 8 THEN LET SC = SC + 10: ELSE

LET SC = SC + 1

 330 PRINT #1; AT 1, 0; "Score: "; SC, "High: "; HI

 400 INK 0

 405 REM *** Draw new snake head ***

 410 PRINT AT S(H, 1), S(H, 2); CHR$ 144

 420 LET H = H + 1: IF H = 705 THEN LET H = 1

 430 LET S(H, 1) = Y: LET S(H, 2) = X

 440 PRINT AT S(H, 1), S(H, 2); CHR$ 145

 450 IF G > 0 THEN GO TO 490

 452 REM *** Delete snake tail ***

 455 LET TY = S(T, 1): LET TX = S(T, 2)

 460 PRINT AT TY, TX; " "

 465 LET M(TY + 1, TX + 1) = 0

 470 LET T = T + 1: IF T = 705 THEN LET T = 1

 475 REM BEEP .008, -20

 480 GO TO 500

 490 LET G = G - 1

 495 IF G = 2 THEN BEEP .04, -10

 496 IF G = 1 THEN BEEP .04, -20

 497 IF G = 0 THEN BEEP .04, -5

 500 LET MV = M(Y+1, X+1)

 501 IF MV = 1 THEN LET M$ = " You bit yourself ": GO TO 700

 502 IF MV = 2 THEN LET M$ = " You hit the wall ": GO TO 700

 503 IF MV = 3 THEN LET M$ = " The mongoose bit you ": GO TO 700

 510 LET M(Y+1, X+1) = 1

 590 GO SUB 4000

 600 GO TO 100

 700 REM *** GAME OVER ***

 701 FOR I=0 TO 1: SPRITE I, 0, 0, 0, 0: NEXT I: REM HIDE APPLE AND MONGOOSE

 705 INK 3

 710 LET I=H

 715 REPEAT

 717 LET C=144: IF I = H THEN LET C=147

 720 IF I = H OR S(I, 1) <> S(H, 1) OR S(I, 2) <> S(H, 2) THEN PRINT AT S(I,

1), S(I, 2); CHR$ C

 725 WHILE I <> T

 730 LET I=I-1

 735 IF I = 0 THEN LET I = 704

 737 PAUSE 1

 740 REPEAT UNTIL 0

 810 PAPER 1

 811 FOR I = 6 TO 15

 812 PRINT AT I, 0; " "

 813 NEXT I

 814 BORDER 6: PAPER 2: INK 7

 815 PRINT AT 9, (32 - LEN (M$)) / 2; M$

 820 INK 6: FLASH 1

 821 PRINT AT 7, 10; " GAME OVER! "

 825 FLASH 0: PAPER 5: INK 1

 830 IF SC <=HI THEN GO TO 850

 840 LET HI = SC

 841 LET M$ = " New high score : "+ STR$ (HI) + " "

 845 PRINT AT 11, INT ((32- LEN (M$))/2); M$

 850 PAPER 1: INK 7

 870 FOR I = 15 TO -30 STEP -2

 871 BEEP .05, I

 872 NEXT I

 875 PRINT AT 13, 1; "PRESS "; : INVERSE 1 : PRINT "M"; : INVERSE 0 : PRINT " TO

RETURN TO MAIN MENU"

 876 PRINT AT 14, 1; "OR ANY OTHER KEY TO PLAY AGAIN"

 880 LET K$ = INKEY$

 885 IF K$ = "" THEN GO TO 880

 890 IF K$ = "M" OR K$ = "m" THEN GO TO 10

 895 GO TO 15

 900 REM *** UDGs ***

 901 RESTORE 903

 902 FOR I = 0 TO 31: READ L: POKE 65368+I, L: NEXT I

 903 DATA 60, 66, 129, 129, 129, 129, 66, 60: REM SNAKE BODY 144

 904 DATA 60, 66, 165, 129, 165, 153, 66, 60: REM SNAKE HEAD 145

 905 DATA 4, 4, 4, 255, 64, 64, 64, 255: REM WALL 146

 906 DATA 60, 66, 165, 129, 129, 153, 66, 60: REM SNAKE SAD 147

 910 RETURN

1000 REM *** APPLE ROUTINE ***

1001 REM APPLE NOT YET FALLEN

1005 IF FX <>-1 THEN GO TO 1100

1010 LET FX = INT (RND *32): LET FY = INT (RND *22): LET FD = 40+ INT (RND

*30)

1015 IF M(FY + 1, FX + 1) <>0 THEN LET FX = -1 : LET FD = 0: RETURN

1030 SPRITE 0, FX*8+32, FY*8+32, 0, 1: REM RED APPLE

1040 RETURN

1100 REM APPLE ALREADY FALLEN

1105 LET FD = FD - 1

1110 IF FD = 8 THEN SPRITE 0, FX*8+32, FY*8+32, 2, 1 : RETURN : REM ROTTEN

APPLE

1111 IF FD = 16 THEN SPRITE 0, FX*8+32, FY*8+32, 1, 1 : RETURN : REM YELLOW

APPLE

1115 IF FD = 0 THEN SPRITE 0, 0, 0, 0, 0: LET FX = -1: REM HIDE APPLE

1130 RETURN

1500 BORDER 0: PAPER 0: CLS

1505 FOR I=0 TO 3: SPRITE I+2,120+16*I,32,I+4,1: NEXT I

1506 INK 7: PRINT AT 1,26; "v. 3.0": INK 5

1507 PRINT "Guide the snake "; : INK 4: PRINT CHR$ 145; CHR$ 144; CHR$ 144;

 CHR$ 144; : INK 5: PRINT " through the"

1508 PRINT "garden, eating the apples that": SPRITE 0,240,56,0,1

1509 PRINT "fall from the tree, before they"

1510 PRINT "rot. Avoid the walls "; : PAPER 2: INK 6: PRINT CHR$ 146; CHR$ 146;

 CHR$ 146; : PAPER 0: INK 5: PRINT " and the"

1511 PRINT "mongoose .": SPRITE 1, 104, 80, 3, 1

1512 PRINT

1513 INK 7:PRINT "There are 8 different gardens:"

1514 INK 6: PRINT "press key from "; : INVERSE 1 : PRINT "1";

1515 INVERSE 0: PRINT " to "; : INVERSE 1: PRINT "8";: INVERSE 0

1516 PRINT " to choose."

1517 PRINT

1518 GO SUB 3050

1519 INK 6: PRINT "Press "; : INVERSE 1: PRINT "S"; : INVERSE 0 : PRINT " to

change speed."

1520 INK 7: PRINT : PRINT "Snake controls:": INK 6: INVERSE 1

1521 PRINT "Q"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "UP"

1522 PRINT "A"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "DOWN"

1523 PRINT "O"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "LEFT"

1524 PRINT "P"; : INVERSE 0: PRINT " OR "; : INVERSE 1: PRINT "RIGHT"

1525 INVERSE 0: PRINT

1527 INK 5: PRINT "Check out my other retro stuff @": INK 7

1528 PRINT "https://retrobits.altervista.org"

1529 PRINT #1; AT 0, 0; " https://retrobits.itch.io "

1530 PRINT #1; "Enjoy! Marco 'Pulce' Varesio"

1550 LET L$ = INKEY$

1555 IF L$ >= "1" AND L$ <= "8" THEN GO TO 1570

1557 IF L$ = "S" OR L$ = "s" THEN GO SUB 3100

1560 GO TO 1550

1570 FOR I=0 TO 63: SPRITE I,0,0,0,0: NEXT I

1580 RETURN

1600 REM *** DRAW SELECTED GARDEN ***

1601 IF L$ = "1" THEN GO TO 1700

1602 IF L$ = "2" THEN RESTORE 2000

1603 IF L$ = "3" THEN RESTORE 2050

1604 IF L$ = "4" THEN RESTORE 2010

1605 IF L$ = "5" THEN RESTORE 2020

1606 IF L$ = "6" THEN RESTORE 2030

1607 IF L$ = "7" THEN RESTORE 2080

1608 IF L$ = "8" THEN RESTORE 2090

1610 PAPER 2: INK 6

1620 READ B

1630 FOR K = 1 TO B

1640 READ MINY: READ MINX: READ MAXY: READ MAXX

1650 FOR I = MINY TO MAXY

1651 FOR J = MINX TO MAXX

1660 PRINT AT I, J; CHR$ 146

1665 LET M(I+1, J+1) = 2

1670 NEXT J

1671 NEXT I

1690 NEXT K

1700 FOR I = -15 TO 15 STEP 2

1701 BEEP .05, I

1702 NEXT I

1750 PAPER 4

1900 RETURN

2000 DATA 4

2001 DATA 0, 0, 0, 31

2002 DATA 21, 0, 21, 31

2003 DATA 0, 0, 21, 0

2004 DATA 0, 31, 21, 31

2010 DATA 8

2011 DATA 0, 7, 9, 7

2012 DATA 5, 21, 5, 31

2013 DATA 11, 23, 21, 23

2014 DATA 16, 0, 16, 9

2015 DATA 0, 8, 9, 8

2016 DATA 6, 21, 6, 31

2017 DATA 11, 22, 21, 22

2018 DATA 15, 0, 15, 9

2020 DATA 4

2021 DATA 6, 7, 7, 24

2023 DATA 16, 7, 17, 24

2024 DATA 9, 6, 14, 7

2025 DATA 9, 24, 14, 25

2030 DATA 4

2031 DATA 0, 4, 2, 27

2032 DATA 19, 4, 21, 27

2033 DATA 0, 0, 21, 3

2034 DATA 0, 28, 21, 31

2050 DATA 8

2051 DATA 0, 0, 0, 31

2052 DATA 21, 0, 21, 31

2053 DATA 9, 3, 9, 28

2054 DATA 13, 3, 13, 28

2055 DATA 1, 0, 8, 0

2056 DATA 1, 31, 8, 31

2057 DATA 14, 0, 20, 0

2058 DATA 14, 31, 20, 31

2080 DATA 8

2081 DATA 13, 27, 17, 27

2082 DATA 17, 16, 17, 26

2083 DATA 4, 4, 8, 4

2084 DATA 4, 5, 4, 15

2085 DATA 13, 25, 15, 25

2086 DATA 15, 16, 15, 24

2087 DATA 6, 6, 8, 6

2088 DATA 6, 7, 6, 15

2090 DATA 11

2091 DATA 0, 0, 0, 14

2092 DATA 0, 17, 0, 31

2093 DATA 21, 0, 21, 14

2094 DATA 21, 17, 21, 31

2095 DATA 5, 3, 5, 28

2096 DATA 16, 3, 16, 28

2097 DATA 1, 0, 9, 0

2098 DATA 12, 0, 20, 0

2099 DATA 1, 31, 9, 31

2100 DATA 12, 31, 20, 31

2101 DATA 10, 15, 11, 16

2500 REM *** MONGOOSE ROUTINE ***

2503 IF F <> 0 AND F <> 64 AND F <> 128 AND F <> 192 THEN RETURN

2505 IF MX = -1 THEN GO TO 2600

2510 LET MR = RND

2515 IF MR > .6 THEN RETURN

2520 SPRITE 1, 0, 0, 0, 0: REM HIDE MONGOOSE

2525 LET M(MY + 1, MX + 1) = 0

2530 LET MX = -1

2590 RETURN

2600 LET MR = RND

2605 IF MR > .7 THEN RETURN

2610 LET MX = INT (RND *32): LET MY = INT (RND *22)

2615 IF MX = S(H, 2) OR MY = S(H, 1) THEN LET MX = -1: RETURN

2620 IF M(MY + 1, MX + 1) <>0 THEN LET MX = -1: RETURN

2625 SPRITE 1, MX*8+32, MY*8+32, 3, 1: REM DRAW MONGOOSE

2630 LET M(MY + 1, MX + 1) = 3

2700 RETURN

2800 REM *** WELCOME (LOADING SCREEN & MUSIC INTRO) ***

2805 LAYER OVER 0

2810 BORDER 0: PAPER 0: REM POKE 23739,244

2820 CLS:LAYER 2,1:LOAD "basnake.nxi" LAYER

2822 PAPER 5: INK 26: PRINT AT 23,0;" ";CHR$ 127;"2017-2019 marco's retrobits

"

2825 PRINT AT 0,0;"baSnake 3.0 for ZX Spectrum NEXT"

2827 RUN AT 0: REM OUT 9275, 7: OUT 9531, 0

2830 LET a$="UX5000T60O5W3#FED#Cbab#C"

2831 LET b$="UX5000T60O3W6Dab#fgdga"

2832 LET c$=""

2833 LET d$=""

2834 LET e$="UX2500T60O3W3Dab#fgdga"

2835 LET f$="UX2500O4W6N3D#FAG#FD#FEDbDAGBAG"

2836 LET g$=""

2837 LET h$=""

2838 LET i$="UX5000T60O5W3D#Cbag#fge"

2840 PLAY a$,b$,c$,d$,e$,f$,g$,h$,i$

2850 RUN AT 2: REM OUT 9275, 7: OUT 9531, 2

2860 PRINT AT 0,0; " PRESS ANY KEY TO START "

2870 PAUSE 0

2880 LAYER 2,0: LAYER 0

2890 RETURN

3050 REM *** PRINT TURBO MODE ***

3052 INK 7

3055 PRINT AT 11, 0; "Turbo mode: ";

3056 INK 5

3060 IF TRB = 11 THEN PRINT "ANDANTE ": GO TO 3070

3061 IF TRB = 9 THEN PRINT "MODERATO": GO TO 3070

3062 IF TRB = 7 THEN PRINT "ALLEGRO ": GO TO 3070

3063 IF TRB = 5 THEN PRINT "VIVACE ": GO TO 3070

3064 IF TRB = 3 THEN PRINT "PRESTO ": GO TO 3070

3070 INK 7

3090 RETURN

3100 REM *** CHANGE TURBO MODE ***

3105 LET TRB = TRB - 2

3110 IF TRB = 1 THEN LET TRB = 11

3115 GO SUB 3050

3120 PAUSE 300

3130 RETURN

4000 REM *** INPUT ***

4010 LET DT = D

4100 LET K = CODE(INKEY$)

4210 IF (K = 11 OR K = 81 OR K = 113) AND (D = 3 OR D = 4) THEN LET DT = 1

4220 IF (K = 10 OR K = 65 OR K = 97) AND (D = 3 OR D = 4) THEN LET DT = 2

4230 IF (K = 8 OR K = 79 OR K = 111) AND (D = 1 OR D = 2) THEN LET DT = 3

4240 IF (K = 9 OR K = 80 OR K = 112) AND (D = 1 OR D = 2) THEN LET DT = 4

4280 IF ABS(PEEK 23672 - F) < TRB THEN GO TO 4100

Recommended readings

At the time of writing this document, the ZX Spectrum Next manual has not yet been released;
however, it will be the main reference for BASIC programming on the Spectrum Next.

The classic ZX Spectrum BASIC Programming manual and the comp.sys.sinclair FAQ are always
good reads; after all, the ZX Spectrum Next is an evolution of the classic ZX Spectrum.

NextZXOS and NextBASIC documentation by Garry Lancaster, which is provided in the official
distribution, is essential for understanding the new features introduced with the Spectrum Next.

The SpecNext Developers H.Q. website is the official and the most important web resource, with
developer blogs, tutorials and an ever growing wiki.

Acknowledgments

Thanks to the ZX Spectrum Next team and community!

ZX Spectrum is © Amstrad plc / Sky In-Home Service Ltd.
ZX Spectrum Next is © SpecNext Ltd.
NextZXOS and NextBASIC are © Garry Lancaster.
CSpect is © Mike Dailly.

4290 LET D = DT

4300 RETURN

5000 REM *** SPRITES LOAD & INITIALIZATION ***

5001 LOAD "basnake.spr" BANK 12

5010 SPRITE BANK 12

5020 SPRITE CLEAR

5030 SPRITE PRINT 1

5040 SPRITE BORDER 0

5050 RETURN

af://n650
http://www.worldofspectrum.org/ZXBasicManual/
https://www.worldofspectrum.org/faq/
https://gitlab.com/thesmog358/tbblue/tree/master/docs/nextzxos
https://specnext.dev/
af://n655

	baSnake
	Document history
	Introduction
	Playing baSnake
	Program description
	baSnake game screen
	Variables and data structures
	The snake queue
	The game area map
	Variables quick reference

	Commented baSnake code
	Program and author info
	Initializations
	Main menu
	Game setup
	Main game loop
	Collision detection
	Game over
	Snake color change effect
	Game over message window
	High score update

	User Defined Graphics initialization
	Apple management routine
	Apple not yet fallen
	Apple already fallen

	Main menu management routine
	Selected garden drawing routine
	Mongoose management routine
	Mongoose shown
	Mongoose hidden

	Welcome routine
	Logo screen
	Music

	Print turbo mode routine
	Select turbo mode routine
	Input routine
	Sprites loading and initialization routine

	Full source code
	Recommended readings
	Acknowledgments

